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PREFACE

This research project was funded by the Kansas Department
of Transportation K-TRAN research program. The Kansas
Transportation Research and New-Developments (K-TRAN) Research
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program are jointly developed by transportation professionals
in KDOT and the universities.
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the object of this report.

This information 1s available in alternative accessible
formats. To obtain an alternative format, contact the Kansas
Department of Transportation, Office of Public Information,
7th Floor, Docking State Office Building, Topeka, Kansas,
66612-1568 or phone (913)296-3585 (Voice) (TDD).

DISCLAIMER

The contents of this report reflect the views of the
authors who are responsible for the facts and accuracy of the
data presented herein. The contents do not necessarily
reflect the views or the policies of the State of Kansas.
This report does not constitute a standard, specification or
regulation.






Abstract

Effective planning and scheduling has become increasingly important for the state
departments of transportation to efficiently use resources and avoid project delays. Accurate
estimates are needed for task durations and resource requirements. The predictive models for
durations and resource requirements need to accurately reflect the agency’s current business
practices and requirements. Updating predictive models is thus important to the improvement of
planning and scheduling.

Updating predictive models for KDOT’s (Kansas Department of Transportation)
management system has two goals: prediction and description. Prediction involves using some
variables in the data base to predict unknown values of interest, in this case activity duration.
Description involves finding regularities underlying the data, which are interpretable to the
domain engineers. These two goals can be accomplished when the appropriate numerical
rélatiénships are induced from the data base.

This report presents a method, combining machine learning technique and regression
analysis, to automatically and intelligently update predictive models used in KDOT’s internal

project management system. Different predictive models are used in different projects. The
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predictive models used by KDOT consist of planning factors (predictive equations) and base
quantities (scaling factors), which are applied to predict durations and resources of Functional
Units (defined as subactivities). The method developed may be used for either task durations or
resource requirements, but this report focuses on duration examples due to KDOT’s priority in
first updating these models.

The method proposed is a three stage learning process. The first stage is concerned with
data analyéis to obtain new knowledge of each Functional Unit. This stage finds the numerical
relationship between the duration of the Functional Unit activity and the project attribute values
recorded in the data base, the most difficult task in updating the predictive models. The second
stage is concermed with searching for Functional Units that behave similarly. This stage
identifies which Functional Units can be described by the same planning factor, that is to say, the
same independent variables and same form of predictive equation. The third stage is concerned
with generating new planning factors and the base quantities used to scale a single planning
factor for use to predict several Functional Unit activity durations.

A system called PFactor, written in C and executing both on UNIX and Windows
systems, is built based on the proposed method. The tests on artificial data sets show good
performance. The performance on real data sets is highly depended on the quality of the training
date provided. Due to the strong noise of KDOT’s real data sets, the avefage quality of the
updated predictive models is not high. To improve the results obtained from the system, data

sets have to be cleaned and preprocessed.
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Chaptér 1

Introduction

1.1. General

Transportation engineering is concerned with various transportation systems, such as
highways, railways, aviation and other public modes. The main aim of the departments of
transportation is to ensure the safe and efficient movement of people and commodities throughout
the transportation networks. To meet this goal, many transportation projects have to be done.
Generally, transportation projects are complex and costly, requiring great attention to the
management of both time and resources. This makes planning and scheduling transportation
projects an interesting and important subarea of transportation engineering.

Construction project planning and scheduling can be viewed as falling into two stages. The
first stage "invci)lves planning and schedﬁling of project development and engineering, a task that is
typicélly the responsibility of agencies like KDOT that manage many construction projects. This
stage deals with planning and scheduling project preparation going on in the agency itself before

release of the project for bid. It stresses the allocation of resources within the agency. The second



stage involves planning and scheduling of project execution and construction, a task that is typically
the responsibility of the contractors. Instead of covering the whole process of planning and
scheduling a construction project, this report deals with the improvement of planning and
scheduling transportation projects in the first stage. The particular focus of this report is to improve

the prediction of project activity duration.
1.2. Problem Statement

KDOT is in the process of developing construction project activity networks that more
accurately reflect the agency’s current business practices and requirements. In order to successfully
implement the new construction project activity networks, updated duration and resource
requirement prediction models are needed. Activity duration and resource requirements are
currently based on predictive models which have not been systematically updated in a number of
years. This p_roject analyzes historical activity duration data that have been maintained by KDOT.
Construction project predictive models based on actual data are derived for use in the new
construction project activity networks. These models, in conjunction with project variables,
proposed work type, skeletal activity network, and letting data, may be used to determine activity

durations for planned projects.



1.3. Background

Two main objectives of managing transportation projects in KDOT are time management
and resource management. Failure to properly manage time may result in schedule slippage and
cost overruns. Resource management concerns the usage of labor resources within KDOT itself.
Accurate duration and resource predictions of activities required for completing a transportation
project are crucial to the effectiveness of planning and scheduling transportation projects.

The predictive models currently in use were developed by experienced KDOT personnel in
1983-85. These models were based on a small set of projects (approximately six projects for each
fundamental work type, probably restricted to four to five fundamental work types) selected by the
experts to be typical cases. The induced predictive models in fact are mathematical functions, using
project attributes to predict the project activity durations. The details on predictive models are
discussed in Section 2.2, Chapter 2. Applying those predictive models, for example, an activity
duration is predicted as 107 days but actual duration is 46 days; another activity duration is
predicted as 193 days but actual durations is 43 days. The percentage deviation are 133 and 78 for

these two cases respectively, where percentage deviation is defined as

Predicted value — Actual value
Actual value )

1.1)

Percentage deviationx 100 =

Such inaccuracy of duration prediction obviously results in poor planning and scheduling. It is

necessary to update the predictive models in order to improve the effectiveness of planning and



scheduling transportation projects for KDOT.

Predictive models are mathematical relations. Mathematically speaking, they use a set of
independent variables x,, x,, ..., x, to determine the targeted dependent variable y. In this
problem, the targeted variable is the activity duration and the independent variables are the
project attributes or a subset of the project attributes. Updating the predictive models consists of
finding the numerical relationship between the targeted dependent variable y and the independent

variables x,, x,, ..., X_ as
y = f{x19x29"-:-xm} (1.2)

based on actual project records. The actual projects are recorded by KDOT in its project
management system. In the management system, a database contains all project information,
including project attributes and project activity durations. More details on the data records are
provided in Section 2.4, Chapter 2.

The data analysis is performed on data extracted from KDOT’s management system. The
‘intended result is that the new numerical relationship thus induced from historical data will give
numeric prediction for the variable y of new cases more accurately than the current models. In
addition, it is intended that the new médels can be systematically updated as more data is
collected.

Building new predictive models is difficult and time consuming, especially when it is
desired to update predictive models as more data is collected. Traditional regression based

methods for finding numerical relationships succeed when the relationships to be discovered are



homogeneous, that is to say, the same relationships between variables hold over the entire
problem domain. These methods also require the variables to be of one type, that is to say, the
variables are all numeric. In addition, traditional regression analysis must assume a model a
priori. That is to sa};, the sets of independent and dependent variables are predefined. However,
the real world engineering problem under study does not satisfy these requirements of the
traditional methods. The characteristics of the problem thus-prevent the direct application of
traditional regression analysis. A different method is needed to automatically, intelligently, and
efficiently update the desired predictive models.

Machine learning, a rapidly developing subarea of artificial intelligence, provides very
powerful tools for updating predictive models. A method combining machine learning techniques
and statistical analysis is used in this study to analyze historical data to derive new predictive

models.

1.4. Objective and Scope

Updating predictive models for KDOT’s management system has two goals: prediction
and description. Prediction involves using some variables in the data base to predict unknown
values of interest, in this case activity duration. Description involves finding regularities
underlying the data, which are interpretable to the domain engineers. These two goals can be
accomplished when the appropriate numerical relationships are induced from the data base.

Development of the predictive models begins with review of the current planning value

table structures (i.e., predictive model structures). Historical data base records from KDOT’s



project management systems, RMS (Resource Management System) and CPMS (Comprehensive

Program Management System), are used to construct the new models. The methodology proposed
to develop thevnew predictive models consists of a combination of computer induction and
statistical approaches, primarily linear regression. The project assumes that KDOT provides
available necessary data sets in an electronic form. The quality Qf the resulting predictive models is
highly dependent on the quality of the input historical data provided by KDOT.

A method that can efficiently and intelligently update predictive models is proposed,
which combines machine learning and statistic analysis. A system, called PFactor, is built based
on the proposed method. The testing of the system shows improved performance compared to
current models. The establishment of such a system can keep the predictive models updated over
time by modifying the models when additional data is collected.

This report presents the results of building the system. The report is arranged as follows:
Chapter 2 outlines the planning and scheduling procedure and the predictive models used in
KDOT’s existing planning and scheduling management system. Chapter 3 briefly reviews the
machine learning techniques, presents the method used in updating predictive models and the
algorithmic basis of the PFactor system. Chapter 4 discusses the system PFactor. Chapter 5
shows the performance of the PFactor system in comparison to the performance of the current

KDOT models.



Chapter 2.
Predictive Models in

Transportation Planning and Scheduling

There are many ways to do planning and :scheduling [Stella and Glavinich, 1994]
including various predictive models. In this section, we first briefly review the planning and
scheduling method and the predictive models [plannihg, value tables] used by KDOT in its
internal management system. Then, we discuss the domain knowledge underlying the current

predictive models. Finally, we discuss the process of updating predictive models.
2.1. Planning and scheduling

KDOT classifies the various types of transportation projects by templates. Generic
planning templates are available fbr typical project typés such as: bridge replacefnent, new road
construction, pavement overlay, etc. All template types used by KDOT are listed in Table 2.1.
To plan and schedule a transportation project in its management network, KDOT follows the

steps shown in Fig. 2.1.



Table 2.1 List of templates in use

10.

11.

12.

13.

14.

15.

16.

17.

18.

LOCATION STUDY (LSTD2)
GRADE, BRIDGE & SURFACE (GBS03)
GRADE, BRIDGE & SURFACE (GBS04)
BRIDGE REPLACEMENT (BRRL3)

3R GRADING & SURFACING (3R002)
OVERLAY

BRIDGE OVERLAY (BROV2)

BRIDGE PAINT (PNTO1)

BRIDGE REPAIR (BRPR2)

BRIDGE (BR002)

3R WITH BRIDGE REPLACEMENT (3RRPL)
SURFACING (sU002)

SIGNING (SG001)

LIGHTING (LT001)

SPECIAL (SPEC1)

SEALS (SEALI)

SAFETY REST AREA (SRAO])

MISCELLANEOUS




- R . Prediction X -
Project Project Identification Selection of of Activity Final Planning
Statement Analysis of Activities Template Durations & & Scheduling

Resources
external predictive
knowledge models

Fig. 2.1. Procedure of managing a project.

When a new transportation project is planned, the project statement is given to an analyst.
The first step is for the analyst to break down and review the transportation project according to
its project statement. This requires the review of the project scope and objectives. The results of
this step is the identification of all activities that must be performed in order to complete the
project. Then the analyst uses his/her knowledge to choose a generic template that most closely
matches the project type. That is to say, an activity network is selected for the project. The
following step is to predict how long each activity of the project will take according to the

predictive models stored in the management system. The final step is to generate a complete

plan and schedule either by forward or backward pass calculation [Stella and Glavinich, 1994].

To finish the project, the activities in the activity network have to be done according to the
activity arrangements of the activity network [Activity networks of templates]. In the following,
we look at the project activity networks in order to understand the predictive models used in

KDOT’s management system.



For a typical template, an activity network flow chart is used to plan and schedule a
construction project. The network adopts the Critical Path Method [Stella and Glavinich, 1994]
in planning and scheduling. Fig. 2.2 shows the activity network flow chart of a generic template
suitable for a bridgé replacément.

The basic components of the management network for a project are Work Phases, Events,
and Activities. Work Phases are comprised of Events and Activities. Events are either
Milestones and/or Border Check Points (lesser significant Milestones). The components of the
management network are shown in Fig. 2.2. For instance, the Utility Work Phase is comprised
of the events of UTILP (Utility Plans), UTAGR (Utility Agreement Complete) and UTCOM
(Utility Adjustment Complete), and the activities of UTENG (Utility Engineering) and UTADJ
(Utility Adjustments). The Milestones and Border Check Points are the beginning or ending of
an Activity, and mark a particular point in time for reference or measurement. They do not take
any elapsed time in planning and scheduling.

Activities are associated with time and time is their important factor. An Activity can
start when all predecessors to that Activity are complete. For instance, the activity of PS&E
(Plans, Specification & Estimates) in Fig. 2.2 can start only when its predecessors of UTADJ

-(Utility Adjustments), FIDES (Final Design) and RWCDM (Right of Way Condemnation) are all

finished.
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Table 2.2 Activities contain their Functional Units in the tempiate of 3R/Bridge replacement.

Activities

Functional Units

START

START

DSSUR
(DESIGN SURVEY)

FSURYV (FIELD SURVEY)

DESUP (DESIGN SUPPORT)
DMATL (DISTRICT MATERIALS)
MATLS (MATERIALS)

PREDES
(PRELIMINARY DESIGN)

BRIDG (BRIDGES)

ENVIR (ENVIRONMENTAL)
GEOL (GEOLOGY)

PVMNT (PAVEMENT)
SOILLS (SOLLS)

ROAD (ROAD DESIGN)

FIDES
(FINAL DESIGN)

BRIDG (BRIDGES)

TRCO (TRAFFIC CONTROL)
ENVIR (ENVIRONMENTAL)
GEOL (GEOLOGY)

LANDS (LANDSCAPE)
PVMT (PAVEMENT)

ROAD (ROAD DESIGN)
SIGNS (SIGNING)

SOILS (SOLLS)

RWENG
(RIGHT OF WAY ENGINEERING)

RWENG (RIGHT OF WAY ENGINEERING)

RWAPP
(RIGHT OF WAY APPRAISAL)

RWAPP (RIGHT OF WAY APPRAISAL)
CONOF (CONSTRUCTION OFFICE)

RWNEG
(RIGHT OF WAY NEGOTIATIONS)

CONOF (CONSTRUCTION OFFICE)
RWACQ (RIGHT OF WAY ACQUISITIONS)
RQMGT (RIGHT OF WAY MANAGEMENT)
RWREL (RIGHT OF WAY RELOCATIONS)

RWCDM
(RIGHT OF WAY CONDEMNATION)

LEGAL (LEGAL)

UTENG UTIL (UTILITIES)

(UTILITY ENGINEERING) CONOF (CONSTRUCTION OFFICE)
UTADJ CONOF (CONSTRUCTION OFFICE)
(UTILITY ADJUSTMENT)

12



Further, an Activity consists of subactivities called Functional Units. As shown in Table
2.2, the activity of DSSUR (Design Surveys) includes the functional units of FSURV (Field
Survey), DESUP (Design Support) , DMATL (District Materials) and MATLS (Materials). The
Functional Units of an Activity can be performed at the same time, and their duration may be
different. Therefore, the duration of an Activity is determined by the one of its Functional Units
whose duration is the longest. The ideal relationship between an Activity and its Functional
Units is shown in Fig. 2.3. In Fig. 2.3, — indicates the duration of Functional Units. Actual
cases involving fragmented and nonoverlapping scheduling of functional unit times are discussed

in Chapter 5 under data quality issues.

Date
FU1
U2 R

Activity

FU3 ?
~FU4 - %

- }«4——— Duration of the Activity ——>|

EEE— Duration of Functional Units

Fig. 2.3 Relationship of durations between an Activity and its Functional Units.
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After the determination of Functional Unit durations, Activity durations are easily

evaluated. Finally, the total duration of a project is determined by the summation of the time
taken by the Activities on the critical path. The critical path is defined as the longest continuous
chain of activities through the network schedule that establishes the minimum overall project
duration [Stella and Glavinich, 1994].

According to the above discussions, it is clear that the more accurate the duration
prediction of Functional Units, the more accurate the duration prediction of Activities, resulting

in more effective planning and scheduling.

2.2. Predictive models

The above discussion displays the importance of the duration prediction of Functional
Units. The duration of Functional Units of a project strongly depends on the att;ibutes of the
project. The attributes of a project include road length, the number of lanes and bridges, the
location of a project, etc. In other words, the attributes of a project define the project. Based on
the information of attributes, KDOT personnel analyze the project, identify the activities, select
- an appropriate project template, determine the durations of Functional Units, and complete the
planning and scheduling of the project.

The attributes used in defining a project managed in KDOT are summarized from
predictive models [Planning value tables] and listed in Table 2.3. Table 2.3 shows that a projsct
has many attributes and the attributes are of mixed types, i.e., symbolic and numeric. An
attribute is symbolic when its values are unordered and the number of its values is finite
[Breiman, Friedman, Olshen and Stone, 1984]. For instance, the attributes <US81_ind> and

14




<Urban_ind> in Table 2.3 are symbolic. An attribute is numeric when its values are ordered and
the number of its values is infinite [Breiman, Friedman, Olshen and Stone, 1984]. For example
the attributes <Bridges> and <Length> in Table 2.3 are numeric.

In terms of project attributes, the duration of a Functional Unit can be described as
d = f { attributes} 2.1

where d denotes the duration of the Functional Unit. Eq. (2.1) gives the general forms of
duration predictive models for Functional Units.

Compared with Eq. (1.2), the duration, d, is the targeted dependent variable y while the
project attributes ay, @, ..., an are the independent variables x1, x2, ..., Xm. The construction of the
predictive models involves finding the numerical relations between the targeted dependent
duration d and the independent attributes ay, 4, ..., am.

Eq. (2.1) indicates that in the most general case the duration is assumed to be a function
of all attributes listed in Table 2.3. However, several of those attributes usually dominate the
influence on the duration of a particular Functional Unit. For example, the duration of some
Functional Units depends only on the attributes <Urban_ind> and <Length>. To establish the
current predictive model for the duration of a particular Functional Unit, the experts in planning

and scheduling based on their experiences determined:

15



Table 2.3 Attributes related with planning factors.

ATTRIBUTE NAME ATTRIBUTE VALUES TYPE
Access ind Controlled or Uncontrolled Symbolic
Borrow Yes or No Symbolic
Bridges The number of bridges Numeric
Bridge replacement The number of bridge replacement Numeric
Bridge width Numeric Numeric
Bridge length Numeric Numeric
Construction under traffic Yes or No Symbolic
Crossing Small, Medium, Large, etc. Symbolic
Design In-House or Consultant Symbolic
Distance Travel miles from Topeka Numeric
FHWA improvement type Integer indicating different types Symbolic
Lanes -Two, Four or Six Symbolic
Length Numeric ‘ Numeric
Light tower The number of light tower required Numeric
Location study Major, No-major, etc. Symbolic
Location construct New or Existing Symbolic
Metro Normal or High Symbolic
Places Kansas City, Wichita, Topeka or Others Symbolic
Relocation Yes or No Symbolic
Sign footing The number of sign footing required Numeric
Sign project -~ New or Modified Symbolic
Sign truss Yes or No Symbolic
Surface work type Grading & surfacing , Grading or Surfacing Symbolic
Surface material Bituminous or Concrete Symbolic
Time Time of letting: Jan., Feb.,..., Dec. Symbolic
Tracts The number of tracts to be purchased Numeric
Tracts relocated The number of relocated tracts in negotiation Numeric
Tracts condemned The number of relocated tracts in condemnation Numeric
‘Urban ind Urban or Rural Symbolic
US81 ind East or West Symbolic
US283 ind East or West Symbolic
Utilities The number of utilities Numeric
Utilities required Yes or No Symbolic
16
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e The subset of attributes that dominate the influence on the duration of the particular
Functional Unit. That is to say, the experts selected the attributes judged to be the
significant independent attributes on which the duration of the Functional Unit
depends. Different Functional Units may have different significant attributes.

e The way the significant attributes determine the duration of the particular planning
factor. That is to say, the experts specified the numerical relationship between the

significant attributes and the dependent duration of the Functional Unit.

KDOT manages many transportation projects of a variety of types. More than 18 templates as
shown in Table 2.1 are stored in the management system to classify the various types of projects.
Each template includes many Activities which further consist of many Functional Units as
shown in Table 2.2. Therefore, there are hundreds of Functional Units in the management
system when projects are viewed at the level of Functional Units. If the duration of each
Functional Unit is predicted by its own predictive model like Eq. (2.1), this would lead to an
excessive number of models (mathematical functions) for Functional Units. However, analysts
at KDOT observed that some Functional Units behave similarly, with durations differing only by
a constant. That is to say, those Functional Units have the same significant attributes and those
significant attributes influence the duration in the same way except for the influence magnitude.
For example, there are three Funcﬁonal Units FU1, FU2 and FU3. Their durations are simply

expressed as

17



FU1: d =20 * <Length>;
FU2: d =40 * <Length>; 2.2)

FU3: d =40 * <Bridges>.

It is said that the Functional Units FU1 and FU2 behave similarly, but Functional Unit FU3
behaves differently from Functional Units FU1 and FU2.

This can be accounted for in the predictive model by splitting the duration of a particular
Functional Unit into two parts B and p. Consequently, the duration of a Functional Unit is

measured by the product of B and p
d=Bxp (2.3)

where B is a constant related to the Functional Unit and independent of the attributes, and p is a
function associated with the attributes. B and p are called a base quantity and a planning factor
[Project templates] respectively in KDOT’s project management system. In other words,
predictive models consist of planning factors and base quantities. The durations of Functional
Units are proportional to their corresponding planning factors.

The introduction of planning factors in KDOT’s planning and scheduling system is very
significant, allowing the system to predict the duration of many Functional Units in terms of a
small number of planning factors. Some Functional Units even in different templates may share
the same planning factor by having their own base quantities. Currently, there are 65 planning
factors in addition to a base quantities for each Functional Unit to handle the duration and

resource prediction of all transportation projects in KDOT [Planning value tables, Project
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templates].
2.3. Domain knowledge in predictive models

The process of updating the predictive models used in KDOT’s management system may
gain valuable direction from review of the current predictive models. These current models are
based on the experience of skilled analysts, encoding expert knowledge of the particular problem
area. In the field of knowledge based systems, a particular problem area is called a problem
domain and knowledge required for solving problems in that particular area is called domain
knowledge. In this section, we discuss the domain knowledge underlying the current predictive
models.

Section 2.2 shows that the predictive models used in KDOT’s management system consist
of planning factors and base quantities. According to Eq. (2.3), Activity durations are
proportional to planning factors. Therefore the discussion of predictive models is confined to the
planning factors.

KDOT uses in-house project management system software to manage its transportation
projects. Before KDOT adopted the current ménagement system, CPMS (Combrehensive
Program Management System), in 1992, KDOT had used RMS (Resource Management System)
as its management system. Although the systems have dissimilarities, the characteristics of the
predictive models do not change except for the format of the planning factors. The planniﬁg
factors used in RMS have two formats [Planning value tables]: table and chart. For example,
planning factor PO039 uses the table format as shown in Table 2.4 and planning factor PO021
uses the chart format as shown in Fig. 2.4. These two formats can be reexpressed in a common
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conditional equation format as shown below.

For planning factor PO039

if <Location_construct> = New & <Urban_ind> = Rural, p.f. =1+ ¢;*<Length>
if <Location_construct> = New & <Urban_ind > = City, p.f. =1+ c;*<Length> (2.4)

if <Location_construct> = Existing, pf.=0

For planning factor P0021

_ <Tracts>*3

150
_ <Tracts>*3

100

if < Urban_ind > = Rural, p-f.

if < Urban_ ind > = Urban, p.f. 2.5)

where p.f. denotes planning factor; ¢; and ¢, are constants; <Locatiori_construct>, <Urban_ind>,

<Length>, and <Tracts> are the significant attributes. This format is adopted by KDOT’s new

management system, CPMS, to express planning factors using a single format.
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Table 2.4 Planning factor PO039

Length New Location Construct Existing Location Construct
(Miles) Rural Urban
1 1.00 1.00 0
2 1.04 1.06 0
3 1.08 1.13 0
4 1.12 1.19 0
5 1.16 1.26 0
6 1.20 1.32 0
7 1.24 1.39 0
8 1.28 1.45 0
9 1.32 1.52 0
10 1.36 1.58 0
11 1.40 1.65 . 0
12 1.44 1.71 0
13 1.48 1.77 0
14 1.52 1.84 0
15 1.56 1.90 0
16 1.60 1.97 0
17 1.65 2.03 0
18 1.69 2.10 0
19 1.73 2.16 0
20 1.77 223 0

21



(O8]
& » &

Planning factor

e
- O

MO

D 9 & & 10 120 140 10

Tracts

— <Urban_ind>=Urban ~~~ <Urban_ind>= Rural

Fig. 2.4 Planning factor P0021.

22




The current planning factors implicitly represent domain knowledge. An examination of

these planning factors [Planning value tables] and the attributes used in the planning factors

[Appendix A] show the following useful information about the given problem area:

1)

2)

3)

Different planning factors have different significant attributes, i.e., a Functional Unit has
its own significant attributes. Those significant attributes can be symbolic or numeric.
For example, P0021 has two significant attributes (<Urban_ind> and <Tracts>) while
P0039 has three significant attributes (<Urban_ind>, <Location_construct>, and
<Length>). The attributes <Tracts> and <Length> are numeric; <Urban_ind>, <Tracts>,
and <Location_construct> are symbolic.

The space of a planning factor is nonhomogeneous and multidimensional. That is to say,
the same numeric relationship does not hold over the entire planning factor space. Rather
than express the planning factor as a single function, it is expressed as region:equation
pairs. Region descriptions are the "if" parts of the planning factors. For example,

planning factor PO021 has two regions (<Urban_ind; = Rural and <Urban_ind> =

. . ) ) < Tracts>*3 | )
Urban). These two regions have their own numerical functions. —-1—-50—13 used in

< Tracts > *3

the region (<Urban_ind> = Rural) and is used in the region (<Urban_ind>

= Urban).

Attributes are used either in region descriptions or region equations. That is to say, the
attributes are divided into two groups. One group is used only in region descriptions and
the attributes in this group are called region description attributes. ' The other group of

attributes is used only in region equations and the attributes in this group are called
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equation attributes. Most description attributes are symbolic and very few description
attributes are numeric. The numerical attributes used in descriptions have to be
discretized and treated as symbolic. All equation attributes are numeric.

4) The region equations are linear, that is to say, the region equations are linear functions of

their significant attributes.

2.4. Process of Updating Predictive Models

| Historical data on transportation projects has been collected by KDOT in both the older
system, RMS (1980-1991), and the current system, CPMS (1992-now). RMS records planned,
estimated, and actual durations while CPMS records only planned and actual durations. The
planned durations are derived from the predictive models (planning factors and base quantities).
The estimated durations are generated by work group managers. The actual durations match with
actual charges on time sheets. Actual for newer projects would have to be inferred from data
available in cost center feedback CCFB data bases used for KDOT accounﬁng. The estimated

durations contain the prediction by the squad leader early in the process or may reflect a much later

revision, usually closer to the actuals. CPMS does not make this distinction between estimated and.

actual durations.

The goal of updating planning factors is to improve the duration prediction for actual
duration. Actual duration should be used in data analysis rather than estimated duration. The
planned duration should be used in the comparison of the performance of the current and updated
planning factors. When a data set is extracted from the master data base, that data set contains

examples appropriate for updating a planning factor in the form of a matrix. Each row is a sample
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record including an actual duration, a planned duration, and project attributes. The detailed
information on the format of the data set is given in Chapter 4.

The planned durations are determined by the current predictive models, i.e., planning factors
and base quantities that were built by experienced personnel years ago and have rarely been
updated. The comparison between the actual and planned durations indicates that the predictive
models do not reflect current practice and requirements as shown in Table 2.5. The current
predictive models may either overestimate or underestimated durations. The data records in Table

2.5 come from data file "cprms16.txt" discussed later in Section 5.2, Chapter 5.

Table 2.5. Comparison between actual and planned durations of some data records.

Actual Duration Planned Duration Difference (Actual - Planned)

(Days) (Days) (Days)
34 167 -133
11 120 -109
46 107 -61
189 90 99
174 60 114
193 43 150

244 85 159
336 133 203

Updating predictive models is necessary for KDOT to improve the effectiveness of planning
and scheduling. To allow the updated predictive models to be easily integrated with KDOT’s
existing planning and scheduling system, it is preferred that the format of predictive models remains

unchanged, which means keeping predictive models in the same form of planning factors and base

]
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quantities. Updating the predictive models thus consists of updating the planning factors and base
quantities based on analyzing the available database.

Predictive models predict the durations of Functional Units. Therefore the updating process
has to start at the level of Functional Units in order to generate new planning factors and base
quantities from the database. From the discussion on predictive models in the last section, the

updating process can be viewed as composed of the following three stages

¢ Analyzing the data set of each Functional Unit
e Searching for Functional Units that behave similarly

e Generating new planning factors and base quantities

1. The first stage: analyzing the data set of each Functional Unit

The first stage of the learning process is to obtain new knowledge of each Functional Unit.
In other words, the first stage of the learning process is to find the numerical relationship between
the duration of the Functional Unit and project attributes. Therefore, the most general expression of

Functional Unit duration is

d = f {attributes} (2.6)

This is a hybrid domain (attributes of symbolic and numeric types) and the duration space is

multidimensional and nonhomogeneous. By introducing the domain knowledge discussed in
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Section 2.3 into Eq; (2.6), the duration can be expressed as region:equation pairs, where the region

description ranges over the description attributes and the region equations are linear functions of the

equation attributes. The most general expression of the duration in range R; is

Ri: d=f; {attributes} 2.7

=cCpi+cia+ca+...+Cpiay

where i depends on the number of attribute values used in region description; R; represents the ith
region description; cgi , ¢1i , €2 , Cmi are region related constants, and aj, ay, ..., ap are project
attributes, and m is the number of the attributes used in each region, and m is equal or less than the
total number of equation attributes. This equation representation is very important. It represents
domain knowledge, i.e., it represents the user’s expectations about possible forms of the numerical
relationship.

The new knowledge region:equation pairs of a Functional Unit comes from analyiing a data
set containing all data related with that Functional Unit extracted from the available RMS and
CPMS data bases. The data set includes the project attributes, actual duration and planned duration

of the Functional Unit. The output from the first learning stage answers the following:

a) What attributes influence its duration? i.e., what are the significant attributes used in
region descriptions and numerical equations?
b) How do the significant attributes determine its duration? i.e., how are the significant

attributes used in region descriptions and numerical equations?
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As discussed before, not all project attributes influence duration of a typical Functional Unit.
Only several significant attributes determine the duration of a typical Functional Unit. However, it
is unknown before data analysis what attributes of the projects should be used to determine the
duration of the Functional Unit. It can be answered only after analyzing the subdata base of the
Functional Unit. Due to the large number of project attributes, the combination of possible relations
grows rapidly, making it difficult to select the significant attributes that determine the duration of
the Functional Unit. Each of the hundreds of Functional Units in the construction project
management system need to follow the same procedure. The method using only regression analysis
is thus theoretically possible but pracﬁcally infeasible.  Fortunately, the rapid development of
machine learning techniques provides a powerful tool to solve this kind of problem. The method
proposed to update the predictive models is a combination of machine learning and statistical

regression analysis, discussed in detail in Chapter 3.

2. The second stage: searching for Functional Units that behave similarly

The second stage of updating predictive models needs to identify which Functional Units
can be described by the same planning factor. This stage is a process of comparing region-equation

pairs. Two Functional Units can be predicted by the same planning factor only when

e The region:equation pairs of two Functional Units have a one-to-one correspondence. The
region descriptions are the same in corresponding region:equation pairs.
e The numeric equations in the corresponding pairs are proportional.

Assume two Functional Units have 3 region:equation pairs and their region:equation pairs

28



satisfy the first requirement. Their region-equation pairs are shown in the table below.

Table 2.6 Region:equation pairs of two Functional Units

Functional Unit 1 Functional Unit 2
Region 1 Eq_11 Eq_21
Region 2 Eq_12 Eq_22
Region 3 Eq_13 ~ Eq.23

The following ratios may be determined for these equations.

Eq_11 Eq_12 Eq_13

=eq, =ey,
Eq 21  Eq22 °

=e; 2.8)

If the numeric equations in the corresponding pairs are proportional, then ey , e; and e3 are
constants.

o The ratios of the proportionality of corresponding equations are the same. That means

ey = e = e3 = constant 2.9)

The new knowledge acquired in this stage is used as the input for the third stage of updating

predictive models. The comparison of the region equations is time consuming because of the

number of Functional Units, thus this learning process is automated.
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3. The third stage: Generating new planning factors and base quantities

The third stage of updating predictive models generates the new planning factors and base
- quantities. For those Functional Units that can be predicted by the same planning factor, it
averages the corresponding parameters of the equations of these Functional Units and obtains the
parameters of the planning factor.

‘The complete process of updating predictive model of base quantities and planning factors is

shown in Table 2.7.
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Table 2.7 The learning process for updating predictive models.

Input : A set of training examples

Output : Planning factors and base quantities of Functional Units
Procedure

Begin

decompose the database into subdata bases according to Functional Units
for each subdata base
begin
find d=f {attributes }
end
for each two Functional Units
begin
check the one to one correspondence;
check the proportionality of equations in corresponding equations;
Check the ratio of the proportionality;
if those three conditions are satisfied
then use the same planning factor for the Functional Units;
else use different planning factors.
end
for each planning factor
begin
for all Functional Units related with the planning factor
begin .
generate planning factor.
end
for each Functional Units
begin :
generate its base quantity based on the new planning factor.
end |
end
Output.
end
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Chapter 3

Methodology of Updating Predictive Models

The previous chapter introduced the three stage process of updating predictive models. The
most difficult task is in the first stage of finding the numerical relationships between durations and
attributes, expressed as region:equation pairs. The difficulties come from the following
characteristics of the problem: (1) There are many attributes and they are of mixed types,
symbolic and numeric. (2) The numerical relations between duration and attributes are
multidimensional and nonhomogeneous. (3) Significant attributes are unknown before data
analysis.

These problem characteristics preclude a straight forward application of traditional
statistical regression analysis. Traditional statistical regression analysis must assume a model a
priori (unlike 3 above). It requires variables of one type (unlike 1 above), and also requires that
- the numerical relations be homogeneous, that is to say, the same relationship is true over the
entire domain (unlike 2 above). A significant need exists for a new generation of techniques,
combining méchine learning and regression analysis, with the ability to intelligently and

automatically assist humans in analyzing data bases for useful knowledge. This chapter reviews
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machine learning techniques, then discusses the proposed method to update the predictive

models.

3.1. Machine learning techniques

Machine learning is the subfield of artificial intelligence that is concerned with the design of
automatic procedures able to learn from training cases. Since the early 1950s when Turing (1950)
proposed this application for computers, machine learning from examples has been an active
research area in computer science. The early development of machine learning is briefly reviewed
in [Cohen and Feigenbaum, 1982]. Since the 1980s, machine learning has made substantial
progress and various machine learning methods have been proposed. In this section, we briefly
review the machine learning techniques.

The first paradigm of machine learning techniques uses decision rules, decision trees, or
similar knowledge representations. One of the successful algorithms in this paradigm is a tree
based algorithm ID3 [Quinlan, 1983], which uses the statistical theory of information. D4
[Schlimmer and Fisher, 1986] and ID5 [Utgoff, 1988] are incremental induction algorithms for
constructing decision trees. Using the ID3 algorithm, C4 and C4.5 were developed by Quinlan in
1987 and 1992 respectively. C4.5 [Quinlan, 1994] is the most popular and successful in this group
and its software is commercially available. A limitation of these methods is their requirement of
discrete value for attributes. Therefore, continuous attributes have to be discretized for use by these
learning algorithms. Binarizing continuous attributes was proposed to deal with continuous

attributes in the early 1980s. This methodv resulted in other algorithms including ACLD and
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ASSISTANT [Bratko and Konomenko, 1987; Niblett and Bratko, 1987]. When the predicted
decision is ordered continuous numeric value instead of finite classes, CART, constructing
regression trees [Breiman, Friedman, Olshen and Stone, 1984] and MS, generating model trees
[Quinlan, 1992], can be applied. The algorithms build the decision trees, generally by greedy
search, from root down to the leaves. Information about classes or prediction is stored in the action
sides of the rules or leaves of the tree.

The second paradigm of machine learning techniques is case-based or instance based
learning. Rather than forming some abstract models such as trees and storing this structure in
memory, these methods store instances or cases in memory, and classify unseen cases by referring
to similar remembered cases. In other words, they represent knowledge in terms of specific cases
or instances and rely on flexible matching methods to retrieve those céseé and apply them to new
cases. The group contains methods such as nearest neighbor algorithms [Cover and Hart, 1967,
Dasarathy 1991], k-nearest neighbor algorithms [Stanfill and Waltz, 1986] and average-case
analysis [Langley and Iba, 1993].

- The third paradigm of machine learning techniques is neural networks. They represent
knowledge as a multilayer network of threshold units that spreads activation from input nodes
through internal units to output nodes. Therefore, the knowledge hidden in the data is not explicitly
represented. Weights on the links determine how much activation is passed on in each case.
Neural networks can be used to predict both real values and classes. The neural network typically
attempts to improve the accuracy of classification or prediction by modifying the weights on the
links. A comprehensive presentation of various neural networks is given in [Freeman and Skapura,

1991; Skapura, 1996].
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The fourth paradigm of machine learning techniques is genetic algorithms, which was
derived from the evplutionary model of learning [Forsyth, 1989]. Genetic algorithms use the
Darwinian principle of survival of the fittest. A genetic classifier is comprised of a set of
classification elements that replicate and mutate to form new generations. But only more successful
elements produce variants of themselves and proliferate while elements performing poorly are
discarded. The examples of the inductive systems in this group are BEAGLEs, outlined in
[Forsyth, 1989].

The fifth paradigm of machine learning techniques concerns numeric law discovery. In
recent years there has been growing interest.in this field with the rapid growth of the amount of
accessible data. The first group was developed from the BACON algorithm [Langley, Simon,
Bradshaw and Zytkow, 1987] which was designed to discover scientific laws on the basis of
empirical data evidence. BACON systems attempt to find an invariant based on the variable given
as input in order to iteratively build the model. But the BACONSs seem better able to explain
historical laws with artificial data rather than to discover new ones. ABACUS was developed on
the basis of BACON [Falkenhainer and Michalski, 1986]. It discards the requirements of the strict
monotonic relation of two variables as in BACON. Its controlling search strategy also differs from
BACON. IDS was developed by Nordhausen and Langley in 1990. It keeps the basic operators of
BACON to define new terms from existing terms. But it applies correlation analysis to direct the
search from simple terms to more complex ones instead of trying to find an invariant. A critical
review of these methods can be found in [Schaffer, 1990]. KEPLER was suggested by Wu and
Wang [1991]. It uses a reduction algorithm to decompose a multivariate formula into binary

formulas, then finds the appropriate binary formula by varying two variables at a time and matching
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data to a set of prototype functions [Wu and Wang, 1991]. These systems are domain independent
but have restrictive data requirements including small size, noise free, and one function in the

whole domain space.

3.2. Method of Updating Predictive Models

A system that can automatically update the predictive models from the available databasé
would be very helpful to the engineers at KDOT. Such data analysis stresses equally (1) better
prediction for new cases and (2) better description of knowledge underlying the predictions. In
other words, it is desired that (1) the updated predictive models improve the prediction accuracy
and (2) the knowledge hidden in data is expressed as mathematical functions comprehensible to the
domain engineers. To update the predictive models in a way that they can be easily installed in the
current construction project management system CPMS, the three stage learning process discussed

in the Chapter 2 is used. The method used in each stage is presented in turn.

1. The first stage learning process

In the first stage learning process, the numerical relationships between Fﬁnctional Unit
durations and attributes need to be derived. Instead of analyzing the data base from scratch and
giving incomprehensible numerical functions, the domain engineers introduce comprehensibility
requirements based on the domain knowledge for use in directing data analysis. That is to say,

domain engineers give their expectations about possible forms of the numerical relationships.
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Therefore, the introduction of domain knowledge restricts the relationships that can be found.
Considering the domain knowledge of predictive models discussed in Section 2.3, the expected
forms of numerical relationships between the Functional Unit duration and the attributes can be

expressed by region:equation pairs shown in Eq. (3.1)

R;: d= Coit+cCpiar+cyy aa+...+Cpyi Ay (31)

where R; is the region description, that is to say, R; is the region condition setting region
boundaries; aj, as,..., and a, are equation attributes; co; , 1i , €2 , ... , Cmi ar€ region related
constants; m is a region related integer (i.e., the number of significant equation attributes used in
the region i ). Only equation attributes can be used in equations and only description attributes
can be used in region descriptions.

To induce unknown region:equation pairs, the tree based models are chosen as the
knowledge representation. This knowledge representation fits the application domain and is able

to describe the knowledge underlying the data. For example, the region:equation pairs are

ifA=A1andB=BlandD=D1, d=f1
ifA=AjandB=BandD=D,, d=f>

if A=A and B =B,, d=f3 3.2)
ifA=A;and C=C,, d=f,4
ifA=A,and C=C,, d=fs
ifA=A2 andC=C3, d=f5
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where A, B, C and D are description attributes; A and A, are the values of the attribute A; By,

and B, are the values of the attribute B; C;, C; and Cj are the values of the attribute C; Dy and D,
are the values of the attribute C; f1, f2, f3, fa, f5s and fe¢ are the linear functions in
regions. The region:equation pairs of (3.2) can be expressed as the tree shown in Fig. 3.1.

Region descriptions are expressed by the nodes and the arcs of the tree. Regional numerical

relationships are expressed by the linear equations in the tree leaves.

Fig. 3.1 Tree representation of region:equation pairs of Eq.(3.2).

As mentioned before, it is unknown before data analysis what attributes should be used in
region descriptions and what attributes should be used in linear equations. Since many attributes
are present, choosing the most significant attributes is a formidable task, even if the domain
knowledge restricts the choice to a linear function of the significant attributes in each region. A

method combining machine learning and regression analysis is proposed to overcome these
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difficulties so that the numerical relationship between the Functional Unit duration and the

attributes can be obtained.

The algorithm used to accomplish the first stage learning process is a tree based
algorithm. The tree generated by this algorithm is called an M-model tree. As the M-model tree
grows, the algorithm determines what attributes should be put in the nodes of the M-model tree
and what attributes should be put in the leaves of the M-model tree. The algorithm starts by
randomly dividing the data set into training and testing sets (The percentage of the data set used
as testing data is controlled by the parameter TestPer in the program). The training set T is used

for building an M-model tree and the testing set is used for pruning the M-model tree.

a. Building an M-model tree

An M-model tree is built up by analyzing training cases. The first step of building an M-
model tree is to compute the standard deviation [Flannery, ‘Teukolsky and Vetterling, 1988] of
the target values of the cases in 7 that is treated as a measure of error in this process. Unless T
contains very few cases or its measure of error is less than a threshold (defined as SdTOL in the
program), T is split into two or more subsets T; on the basis of one of the symbolic attributes in
order to make the training cases in the subsets more homogeneous. The default minimum
number of cases is 2*(the number of equation attributes in the node) and default threshold
(SdTOL) of error measure is 7. However, these can be changed via options described in Chapter

4. The criterion to select an attribute as a node of the M-model tree is evaluated by the expected
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error reduction [Breiman, Friedman, Olshen and Stone, 1984; Quinlan, 1992]
T;
Aerror = sd(T) - ZT sd (T;) 3.3)

where sd ( T ) denotes the standard deviation of the set of training case T, and sd ( T; ) denotes
the standard deviation of the subset of training cases 7;. The algorithm uses a greedy search to
choose the description attribute that maximizes the expected error reduction. That is to say, the
algorithm evaluates all possible splittings based on description attributes, then selects the
attribute that gives the maximum error reduction. This process is repeated on the subsets until
every subset either contains few cases or the error measure is less than the threshold. Only
description attributes not used in ancestor nodes can be selected for the current node.

Multivariate linear models are constructed for the cases at each non-leaf and leaf node of
the M-model tree, using standard regression analysis [Flannery, Teukolsky and Vetterling, 1988].
Hdwevér, instead of using all equation attributes in the standard regression analysis of each node,
the equation attributes used in the equation of a node are restricted to the equation attributes
inherited from its parent node.

After each linear model is obtained as above, it is simplified by eliminating equation
attributes to minimize its weighted standard deviation. Weighted standard deviation of a node is

defined as Z (T; / T) sd (T; ) after an equation attribute is selected for the node. This algorithm

uses a greedy search to remove attributes whose elimination decreases the weighted standard

deviation. In some cases, the algorithm may remove all attributes, leaving only a constant at the
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leaf. That is to say, the algorithm evaluates all possible eliminations and then eliminates the one
that decreases the weighted standard deviations most. The process is repeated until no attribute
decreases the weighted standard deviation or no numerical attribute is left in the linear equation.

The reason for eliminating numeric attributes after the selection of symbolic attributes for a non-
leaf node is to avoid eliminating significant attributes in the early stage of building up an M-
model tree due to strong noise of other insignificant attributes. In leaves, no weighted standard
deviation can be found. Therefore, the standard deviation sd is used in eliminating numerical
attributes rather than the weighted standard deviation. To simplify the equations in leaves, the

attributes that do not improve the standard deviation within a threshold are also eliminated.

b. Pruning an M-model tree

The recursive partitioning method of constructing the M-model tree continues to
subdivide the set of training cases until each subset in the partition contains few cases or the error
measure is less than a threshold. The result may overfit the data. After the construction of an M-
model tree, testing cases are used to prune the M-model tree in order to simplify the M-model
tree so that the simplified M-model tree gives satisfactory prediction without overfitting. Each
non-leaf node of the model tree is examined, starting near the bottom after the M-model tree is
built up. The algorithm chooses as the final model for this node either the simplified linear
model above or the model subtree, depending on which has the lower error estimate (percentage
deviation defined in Eq. (1.1) ) on the testing data. If the linear model is chosen, the subtree at

this node is pruned to a leaf.
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c. Multiple M-model trees

Due to the noise present in data sets for this engineering problem, a number of M-model
trees are generated using different partitioning of training and testing data. The tree with
minimum error estimate is selected as the best M-model tree to describe the underlying
regularities of the data set. In other words, the process of building andbpruning M-model tree is
repeated until the error estimate on testing data is less than the preset threshold or the preset

repeat times is reached. When the noise is strong, this process becomes more important.

The algorithm for finding the numerical relationship between the Functional Unit
duration and the attributes is shown in Table 3.1. A best M-model tree is selected among several
M-model trees to describe each subdata set. Therefore, what the first stage of learning obtains is a

forest consisting of M-model trees. The outline of this stage is shown in Fig. 3.2.
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Table 3.1. The algorithm for finding numerical relations between duration and attributes.

Input : A set of examples
Output : Numerical relationship between duration and attributes
Procedure

begin

for the repeat times
begin
divide the examples into training and testing sets
calculate the standard deviation sd of the training set
for each non-leaf node
begin
find the attribute maximizing error reduction
use the attribute in the node
simplify linear equation by weighted standard deviation
end |
for each leaf
begin
simplify the numerical relation by standard deviation
end
prune the tree by testing set
if the current tree is better, current tree becomes the best tree;
else keep the best tree.
if the threshold of error estimate is satisfied, break;
end
Output.

end




2. The second stage of learning process

The second stage of learning process is to compare the numerical relationships of all
Functional Units in order to find out what Functional Units behave similarly, in other words, it
compares the M-model trees of the forest built up in the first stage learning process. As mentioned
in Section 2.4, Chapter 2, if two Functional Units behave similarly, they have to satisfy three

conditions. Here, we look at these three conditions when they are applied to M-model trees.

e The first condition requires that the region:equation pairs of two Functional Units are in
one-to-one correspondence, and the region descriptions are the same in corresponding
region:equation pairs. This requirement means that the M-model tree structures are the
same when the requirement is applied to M-model trees. The attributes used in the
corresponding nodes should be the same and the attribute values in the corresponding arcs
are the same.

e The second condition requires that the numerical equations in the corresponding pairs are
proportional. That is to say, the equations in the corresponding leaves of the M-model trees
are proportional when this requirement is applied to M-model trees. Here we look at how
two equations are proportional.

If two equations are proportional, the same numerical attributes are used in the equations,
which means if only a; and a, are used in one of two equations, the other equation also
has only a; and a,. In addition, the corresponding coefficients of the same attributes are

proportional. For example, there are two equations Eql and Eq2.
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qu td= co1+cCi1a +cC21 A (34)

Eq2 td=cptcepa t+ena

where a; and a, are numeric attributes. If they are proportional,

CptCpa +cpa, _ e(cy, +¢,,a, +¢y 2,)

= e = constant 3.5
€y tcha,+cy a, CoptCa +cya,
That is to say
c
ec, = Cp - -2 = e = ¢
Co1
. c12 — _ 6
ec, = Cp - — = e = ¢ (3.6)
Cn
c
€ec, = Cp - 2 = ¢ = ¢
€y
Further
¢ = € = ¢ = e = constant 3.7

Obviously, it is impossible to make the condition Eq. (3.7) be exactly satisfied in practice.

Instead of requiring ¢y = ¢ = ¢; = e = constant, the algorithm requires the relative difference
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among ¢y , ¢1 and ¢; to be less than a threshold, ConstTOL (Constant TOLerance in the

program). That is to say

co — € Co—C,

€y

< ConstTOL and < ConstTOL (3.8)

€y

if cp 20. The default value of this threshold ConstTOL is 15%, but users can change it via

an option discussed later. The lower the threshold, the lower the possibility that two

equations are proportional. When two equations are proportional, the average of the ratios

~ of coefficients ¢, , ¢; and ¢, will be the ratio e of two equations.

e = %(co+c,+c2), : 3.9

The third condition is that the ratios of all corresponding equations are constant. That is to
say, the ratios of the equations in all corresponding leaves are constant when this
requirement is applied to M-model trees. For example, two trees have 4 corresponding
leaves and the equations in corresponding leaves are proportional. Their ratios of |

corresponding equations are e; , €2 , €3 and e, . When

e, = e = e; = e, = constant (3.10)
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it is said that the r;:quirement is satisfied. As with the previous requirement, it is also
impossible to get the condition e; = e, = e3 = e4 = constant to be exactly satisfied in
practice. As previously, this condition is assumed to be satisfied when the relative
differences among the ratios e; , e, , e3 and ey4 are less than a threshold. This threshold is

~again taken as ConstTOL. Therefore, the condition of Eq (3.10) becomes

©1 7% < ConstTOL and
€

1 7% < ConstTOL  and 3.11)
€

1 7% « ConstTOL
€

This threshold is the same as the one used in the second requirement. The ratio of two M-

model trees B will be the average of the ratios of all corresponding equations.
B=(ej+e; + &5 +e4)l4 (3.12)

The algorithm will check the requirements from the first to the third to determine the similarity of

M-model trees. The algorithm for comparing two M-model trees is shown in Table 3.2.
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Table 3.2. The algorithm for comparing two trees.

Input : two M-model trees
Output : if the trees are proportional and similar
Procedure

begin

check if the model tree structures are the same.

check the proportionality of equations in the corresponding leaves.
check if the ratios of equation proportionality are constant

if those three conditions are satisfied

then the trees are proportional and similar;

else the trees are not proportional.

Output.

end

3. The third stage of learning process

Based on the comparison of the M-model trees in the forest of the second stage learning
process, the trees are divided into groups. In each group, the M-model trees are proportional to
each other. Base quantities for each M-model tree and one planning factor will be obtained for
every group of the M-model trees. Assume a group has two M-model trees. If the first is taken as
the primary tree, 1 and B are the base quantities for the first and second tree respectively. The

common tree is

l( treel + "eezj (3.13)
2 B
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This common tree represents the planning factor for this group of trees. This tree can be changed to
the expression of region:equation pairs. The output form of the planning factor is in the region-

equation pairs rather than the tree representation.
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Chapter 4

System PFactor

Applying the method discussed in the last chapter, a system called PFactor is developed to
accomplish the task of updating the predictive models used at KDOT. We discuss how PFactor is

used in this chapter before showing the performance of the system PFactor in the next chapter.

4.1. System Structure

The source code of the system PFactor is written in C language on a Unix System. It
consists of 20 files. The brief descriptions of these files are given in Appendix B. Because the
source code of the files is very long (more than 3000 lines), the source code is not printed out and

put as appendix. The structure of the system is arranged as shown in Table 4.1.
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Table 4.1 System structure.

GetData
GroupData
BuildForest
PFactors

CompErr

Output

Read data set from input data file

Group data into subdata sets

Build an M-model tree for each subdata set

Combine the second and third stage learning process
Compare the error estimate by current and updated
predictive models (planning factors and based
quantities).

Output the updated predictive models (planning

factors and based quantities).

Table 4.2. Input data file format.

< p b d

[ s n n

{ pfactor2 base_Q Duration Duration

P0002 10 35
P0002 5 54

a a X cene a >

n S S oven n

City Length Lane  Material .. Atinn }

23 2 C X
10 4 A X
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4.2. Input file

Before the system begins, the user needs to give the system an input file name, which stores
the data for learning. The input file has format requirements.

The format of an input file is shown in Table 4.2. The data file has to start with attribute
information, which includes three lists. The list information is followed by learning examples. The
first list gives information on attribute status, the second list gives information on attribute types,
and the third list gives information on attribute names.

List 1 must start with "<", followed by a sequence of the following symbols: "p", "b", "d", "e", "a",
"x" and "?". The last symbol of the list must be ">". "b" and "d" have to be in the list, and
they can appear in the list only once. "p" and "e" can be in the list only once if they atppéar in
the list. But "a", "x" and "?" can be in the list more than once depending on the attributes in
the learning data. The order of these symbols is not a mandatory. The elements of the lists

LU

must be separated by space(s) or tab(s) or comma(s) ",". Delimiter choice is up to the users’

preference.
p: Indicates that the column stores current planning factor identification.
b: Indicates that the column stores current base quantities.
d: Indicates that the column stores actual durations.
e: Indicates that the column stores estimated durations by current predictive

models.
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List 2

List 3

a: Indicates that a column stores an attribute that will be used in deriving new
predictive models.
X: Indicates that a column stores an attribute that will not be used in deriving

new predictive models. Introduction of both "a" and "x" to denote attribute
status is due to the consideration that some attributes obviously do not
influence the duration. This information given by users will greatly improve
the efficiency of the machine learning process.

?: Indicates that a column stores an attribute that can not be described by any of

the above characters.

must start with "[", followed by a sequence of the following symbols: "s" and "n". The last
symbol of the list must be "]". This list gives information on the type of attributes in the
column, description attributes or equation attributes. Description attributes are used only in
region descriptions and equation attributes are used only in region equations. Delimiters are
the same as list 1.

s: description.

n: equation.

must start with "{", followed by a sequence of the names of each column. The last symbol
of the list must be "}". Delimiters are the same as list 1. The elements of this list store the
names of the columns. Each name can be only one string. For instance, "US81 indicator" is

not a correct attribute name, but "US81_indicator" is a legal attribute name. It is suggested
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that the number of characters of attribute names be no more than 15 characters although no

limitation is put on it.

Learning examples follow these three lists. The elements of the examples must be

separated by delimiters as for list 1.

When reading data from the input data file, the system checks the data format. If the data
format does not satisfy the format requirements, the system exits with an error message. For
example, if no first list is given in the data file, the system outputs the message "No first list of
attribute information in data file". If no element in the first list is "d", the system outputs the

message "No actual duration in data file".

4.3. Running Options

The system PFactor provides many options for users to control how PFactor behaves.

These options can be used in any order.

-¢ ConstTOL (default = 0.3)
ConstTOL is the threshold that controls the proportibnality of equations and trees,
see Eqs (3.7) and (3.9). If this option is invoked, it will change the threshold of
comparison of equations and trees. The smaller the ConstTOL, the lower the
possibility that two equations/trees are proportional. It is suggested that ConstTOL

be less than 0.5, otherwise strongly non-proportional equations and trees may be
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- infile

-p SdPER

-r Repeat

-s SATOL

‘ taken as proportional.

(default = no input file name)

This option must be used in order to tell the system where to get data. If no input
file name is given or the given input file does not exists, the system will terminate
the execution with a message. Generally, a filename can be any string of characters

that is acceptable as a file name to the operating system. In addition, the input file

~ has to follow a certain format described in section 4.2.

(default = 15 percent)

If this option is invoked, the threshold used to simplify linear equations will change.

- The smaller the SAPER, the less the possibility of eliminating attributes.

(default = 10)

This option is used to tell the system the repeat times of construction of M-model
trees for each subdata set. Appropriate numbers of repeats depend on data quality.
The stronger the noise, the larger the Repeat. However, too large a Repeat does not
help. Therefore, it is suggested that Repeat be less than 30.

(default =7)

This option is used to set the threshold of error measure. It tells the system when to
stop data splitting. The lower the SATOL, the less possibility of stopping data

splitting. Consequently, the M-model tree will become large.

-v VERBOSITY (default = 0)

This option is used to control the output. The lower the VERBOSITY, the less

detailed are the results that are output.
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0 Output only the updated predictive models (planning factors and base
quantities).

| Output the best M-model trees (regions:equation pairs) of all subdata sets.

2 Output the M-model trees (regions:equation pairs) of each repeat after
pruning.

3 Output the M-model trees (regions:equation pairs) of each repeat before
pruning.

4 Output all the details of constructing M-model trees.

-t TestPER  (default = 15)

~ This option controls what percentage of data is used for testing.

4.4. Running PFactor

Before running PFactor, the executable file "PFactor” and the input data files need to be
copied to the same directory. The input data files have to have the format described in Section 4.2.

The typed execution command is
PFactor -i trydata -v 1

After hitting "return”, PFactor is invoked. It reads data from the file "trydata”. The results are
output to the current output channel, for instance, screen. Because VERBOSITY is 1, the best tree

(actual region:equation pairs) of each subdata set will be output to the screen. The order of the
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options is not mandatory, therefore the command

PFactor -v 1 -i trydata

is the same as the last command. To direct the results to an output file, type

PFactor -i trydata -v 1 > tryout

Then, the system writes the results to the file "tryout”.
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Chapter 5

Performance of the system PFactor

Based on the algorithm discussed above, a system called PFactor was developed and
implemented. This system was tested on both artificial data and real data. The performance of the

system PFactor is discussed in this section.
5.1. Performance on Artificial Data Sets
1. First group of artificial data sets

The purpose of testing PFactor on the first group of data sets is to show how PFactor builds
up M-model trees that represent the regularities underlying the data sets.

The first data set includes 100 examples. Each examplé has 10 independent variables xi, ...,
x10 and one dependent variable y. The goal is to find how the dependent variable y is determined by
the independent variables xy, ..., xjo. The data were generated from the following model by Matlab

[Matlab, 1992]
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Take xi, ..., x5 symbolic independent variables used in region descriptions. The discrete

values of these variables are evenly distributed, i.e.

Px1=Y) = P(x;=N) = 12
P(x;=T) = Px=F) = 112
Px;=E) = Px;=W) = 12 G

Pxs=U) = Pxy=V) = Py=W) = 1/3

Pixs=A) = P(xs=B) = P(xs=C) = 1/3

Take x, ..., x10 numeric independent variables used in region equations. Let Z, introduced
noise, be independent of x;, x3, ..., x10 and normally distributed with mean zero and variance

3. Then

ifxy=Yandx,=T sety= 8+ 6x+4x7+2Z
ffxy=Yandx,=F sety=12+10x+10x+Z 5.2)

ifx;=N sety= 7+ Sxg+Z

This model consists of three distinct regression equations with the choice of equations ranged by

two symbolic variables x; and x;.

As discussed in Chapter 4, PFactor provides users with some options to control how the

system behaves in the learning process. Via the options, the following related parameters and

thresholds are preset.
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TestPER = 15
SdPER = 15 (5.3)
Repeat =1

SdTOL =4

Now we discuss how the system PFactor builds up an M-model tree for the data set using these

parameters and thresholds. The M-model tree generated by PFactor is shown in Fig. 5.1.

y:8.08+4.'79x8
Leaf 3

y=10.54+5.84x6+3.96x7 y:10.34+9.99x6+1O.1'7X7
Leaf 1 A Leaf 2

Fig. 5.1 The M-model tree of the first artificial data set when SATOL = 4.

Before the beginning of building up the tree, the system randomly chooses 15 percent of the
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data (TestPER = 15) as the testing data, leaving 85 percent of the data as the training data. The
system uses the 85 percent data to construct the M-model tree.

PFactor begins the construction of the tree with calculating the standard deviation. The
standard deviation (76.19) is greater than the standard deviation tolerance SATOL (5.00).
Therefore, PFactor calculates the error reduction of all symbolic variables to find which symbolic
variable should be used to split the data, in other words, which symbolic variable should be used in
the root node of the M-model tree. The system finds x; gives maximum error reduction, so that x; is
put in the root node.

Then, the algorithm calculates the weighted standard deviation. The weighted standard
deviation without the elimination of any numeric attributes is 27.28. If xs is eliminated, the
weighted standard deviation is 34.67. If x; is eliminated, the weighted standard deviation is 37.87.
If xg is eliminated, the weighted standard deviation is 33.11. If x9 is eliminated, the weighted
standard deviation is 27.07. If xq is eliminated, the weighted standard deviation is 27.05. Therefore,
the variable x) is the most effective elimination. Because the weighted standard deviation without
x10 is less than that of all numerical attributes, xy is eliminated. The weighted standard deviation of
the node becomes 27.05. This process is repeated, and the system finds out the elimination of xg
also reduce the weighted standard deviation so xo is eliminated. The elimination of the remaining
numerical attributes does not reduce the weighted standard deviation. Therefore, only xs , x; and xg
survive and only x¢ , x; and xg are inherited by the child nodes of the root node. |

For the branch < x; = Y > of the root node < x; >, PFactor again calculates the error
reduction of all remaining symbolic variables and x; is selected. Calculating the weighted standard
deviation, no numeric variable is eliminated therefore all the numeric variables x5 , x; and xg are

inherited by its child nodes. For the branch < x; = Y and x; = T > of the node < x; >, the standard
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deviation is less than the threshold of standard deviation SATOL, therefore the branch < x; = Y and
x, = T > becomes leaf 1. Leaves 2 and 3 become leaves also because their standard deviation is less
than the standard deviation threshold SATOL.

At the leaf level, no weighted standard deviation can be obtained, so numeric variables are
further eliminated only when their elimination does not significantly influence the standard
deviation. The significance of the influence is defined by a threshold (SdPER). In other words,

numeric variables are further eliminated only when their elimination does not influence the standard

- deviation within the threshold (SdPER). For example, in the leaf 1, the standard deviation of x¢ , x7

and xg is 3.67. If x5 is éliminated, the standard deviation of x7 and xg is 39.41; if x; is eliminated, the
standard deviation of xs and xg is 17.08; if xg is eliminated, the standard deviation of xs and x; is
3.82. Among those three possible eliminations, the elimination of xg gives the least standard
deviation so the xg is considered as the most effective elimination. Then, the algorithm finds that the
elimination vof the variable xg influences the standard deviation within the preset threshold SdPER of
15 percent, so that the variable xg is eliminated and only the variables xs , x; remain. Now, the

standard deviation of the left becomes 3.82. Next, the system checks the possible eliminations

“again. If xs is eliminated, the standard deviation of x; is 38.76; if x7 is eliminated, the standard

deviation of xs is 16.95. Among the two possible eliminations, the elimination of x; gives the least
standard deviation so x;7 is considered as the most e_ffective elimination. Comparing the standard
deviation of xg with the standard deviation of x7, the elimination bwill increase the standard deviation
out of the 15 percent range. Therefore, no variables can be eliminated. In this leaf, x¢ and x; are left
to build the linear model.

Looking at the standard deviations with xg (3.68) and without xz (3.82) respectively, xg does

not give much contribution to the standard deviation even though the standard deviation with xg is
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smaller. Therefore, a threshold SAPER is set up. If the elimination of numeric variables does not
influence the standard deviation within the threshold range, the numeric variable is eliminated.
PFactor provides users with an option to set SAPER. The value of SAPER is based on users’
understanding of domain knowledge and data quality. The default value of SAPER is 15 percent.
After building the tree, the algorithm tries to prune the tree and shows it is unnecessary to
prune the tree. Therefore, the tree in Fig. 5.1 is taken as the final tree and the responding region -

equation pairs are obtained.

ifxy=Yandx,=T y= 882+ 598x + 381x
ifxy=Yandx,=F y= 1127 +10.12x +10.03 x5 (54)

ifx;=N y= 827 + 471 xg

Comparing Eq. (5.4) with the known function Eq. (5.2), it is noticed that Eq. (5.4) is close to the
known function. It is understandable that the system does not get the exact same function as Eq.

(5.2) due to the introduction of noise in the data.
- Next, we discuss the parameter "Repeat”. Via the option -r , PFactor is run on the same
data set again when "Repeat” is breset as 5. The learning results are quite close. For example,

another set of region-equation pairs is

ifxy=Yandx,=T y= 862+ 59%4x + 3.92x

ifxi=Yandx,=F y= 1092 +10.10x + 10.07 x; (5.5)
ifx;=N y= 842 + 4.69 x3
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Compared with the region-equation pairs in Eq. (5.4), no obvious: difference is observed. The
reason is that this artificial data has h1gh quality and low noise (variance of 3). The repeat times of
the learning process does not strongly influence the results. High quality data sets do not need the
value of "Repeat” to be set very high. For the sake of obtaining satisfactory results, the default

value of "Repeat” is set as 5.

Now, we discuss the influence of the threshold SdTOL on the learning process. The
variance of noise introduced in the data set is 3, and standard deviation tolerance SdTOL is preset as

4, little greater than the noise variance. We get the right tree (Fig. 5.1) without pruning the tree.

- Assume the variance of noise is unknown and SATOL is preset as 2. The tree obtained when

SdTOL=2 is larger than that when SdTOL is set as 4. The tree is shown in Fig. 5.2.

After the growth of thg tree, the systerh starts the process of pruning the tree. ';Fhe process of
tree pruning means elirhinating the syinbolic variables that do not significantly contribute to the
reduction of error csﬁﬁate on testing data. Rather than compére the values of error estimates of a
node and its subtree, the syst;am compares the improvement of error estimate. If the improvement
of error éstimate of the subtree is lower than a certain ;hreshold, the subtree should be pruned. This
threshold is set tﬁe same as the SAPER. Now we see hoW the tree in Fig. 5.2 is pruned back to the

tree in Fig. 5.1.
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Leaf 1 Leaf 2 Leaf 3 Leaf 4 Leal 6 leaf 7 Leaf 8 Leaf 9 Leaf 10

Fig. 5.2 The M-model tree of the first artificial data set when SATOL = 2.

The_'pruning of the tree begins néar the leaves of the tree. First, it checks whether the node <
x3>of<x; =Y énd x, =T > should bé primed. The error estimate of the node (the éverage of
percentage deviation on the testing data) is 2.97 and the error estimate of its subtree is 4.81. Its

subtree (leaves 1 and 2) shoul_d be subétituted by the <x; >of <x; =Y and x,=T >. Therefore the
“ node < x; > of <x; =Y and x, =T > becomes a leaf. The system checks all non-leaf nodes of the
‘treve. The node < x3 >of<x1‘= Yand x;=F >, the node <xs>of <x =Nandx4=V> ancithe
node < x, > of < x; = N > should be pruned, émd thé nodes become leaves. The tree after pruning is
the same as the tree in Fig. 5.1, therefore the obtained region:equation pairs are the same. In some
cases, the error estimate of the node is little larger than that of its subtree. In such cases, the subtree
is also pruned as long as the error estimate of its subtree is not improved within the threshold. This

threshold is set the same as the threshold SdPER.
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To focus on the influence of data quantities on the learning results, a second artificial data
set is generated using the same model of Eq.(5.1) and Eq. (5.2). But the second artificial data

includes 400 examples. The learning results are

ifx;=Yandx,=T y =807+ 600x + 3.97x;
~ifx; =Y and xz— F y=1207+10.04x + 998 x; . (5.6)

ifx;=N y= 689+ 5.03x

when the parameters and thresholds have their default values. The region:equation pairs in Eq. (5.6)
are closer to the known model than those in Egs (5.4) and (5.5), showing that the larger the data set,

the better the results.

To focus on the influence of noise on the learning results, a third art1ﬁc1a1 data set of 100
examples is generated by the same model as Eq. (5.1) and Eq. (5.2). But the th1rd afuﬁcxal data set

includes the introduced noise Z of variance 10. The PFactor generates the following results when

- the running parameters and thresholds are the default values:

ifx; = Yandxz T y=1247 + 587x + 3.57x;
ifxy;=Yandx,=F y= 891 + 9.1_5x6 +9.88 x7+1.93 x5 _ GN))

ifx;=N : y= 805+ 4.63x

The generated functions are not close to the known function. Strong noise can result in the
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generated function not matching the known function. However, more data examples can
compensate for the existence of data noise. The fourth artificial data set is generated, the same as

the tlﬁrd artificial data set except for more examples (400). The generated functions are

ifxy=Yandx,=T y= 735 +600x + 406x;
ifxy=Yandx,=F y= 13.64 +9.94 x5 +10.04 x5 (5.8)

ifx;=N y= 779 +490x3

The generated funetion is close to the known function, showing that more data points compensate

for the noise to enable generation of correct results.
2. Second group of artificial data sets

The second group of artificial data sets are generated to test PFactor’s whole learning
process applied to finding planning factors and base quantities.

An artificial data eet is generated to simulate the real data bese. The influence. of the
parameters and threshold on bujlding an M-model tree is discussed in 'the proceeding section on the
first group of artificial data sets. Those parameters and thresholds are not discussed in this example.

The discussion is focused on the threshold "ConstTOL" that controls the comparison of equations
Eq. (3.8) and trees Eq. (3.11). This controls how many different planning factors are generated.

The data set is divided into 3 subdata sets, each of which consists of 400 examples. Every

example has 10 independent variables xj, ..., x10 and one dependent variable y. The data were

generated from the following models by Matlab [Matlab, 1992]
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Take x1, ..., xs symbolic independent variables used in region descriptions. The discrete

values of these variable are evenly distributed in the same way as shown in Eq. (5.1)

Take xs, ..., x10 numeric independent variables used in region equations. Let Z, the
introduced noise, be independent of x;, x,, ..., x10 and normally distributed with mean zero
and variance 3. Then

The first subdata set:

ifx;=Yandx,=T sety=5+8xs+20x;+Z
ifx=Yandx,=F sety=6+4x+10x+Z = (5.9)

ifx;=N sety=5+8x3+27Z

The second subdata set:
ifx;=Yandx;=Tsety=10 + 16 %+ 40 x7, +Z =2(5+8x+20x7)+Z
ifxy=Yandx,=F sety=12 + 8x +20x7+Z =2(6+4x+10x)+Z (5.10)
ifx;=N sety =10 +16x3 +7Z =205+8x)+7Z

The third subdata set is the same as shown in Eq. (5.2).

According to the known models in Egs (5.1), (5.9), (5,10), and (5.12), the subdata sets 1 and 2
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behave similarly. In othér words, they can be described by the same planning factor in terms of
their own base quantities. If the equatiohs Eq. (5.9) of the first subdata set is selected, the second
subdata set should be described.by the equations Eq. (5.9) multiplied by the constant 2. That is to
say, if Eq. (5.9) is taken as their common planning factor, subset 1 should have base quantity of 1
and subset 2 should have base quantity of 2.
The parameters and thresholds in the learning process is the same as Eq. (5.3) plus the
threshold ConstTOL. Using these parameters and thresholds, PFactor builds up an M-model tree
| for each of subdata sets. The region:equation pairs corresponding to the M-model trees are listed

below:
The first subdata set:
ifxi=Yandx,=T y=4.88+8.01 x5 +20.01 x4
ifxi=Yandx,=F y=5.68+4.02x+ 10.02 x5 (5.11)
ifx;=N | _ y=458+8.11 x5

The second subdata set:

ifx;=Yandx,=T y=10.25+15.92 x5 +40.03 x7

ffxy=Yandx,=F y=13.02+ 7.93 x5 +19.96 x; (5.12)
ifx;=N y=10.13 + 15.98 x3
The third subdata set:
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ifx;=Yandx,=T y= 798+594x + 4.02x;
ifx;=Yandx,=F y=11.96+9.96x +10.02 x; (5.13)

ifx;=N y= 6.63+5.01xg

When ConstTOL is set as 0.10, the results of planning factors and base quantities are shown as

following

There are three planning factors

The 1st planning factor is

ifx;=Yandx,=T y=4.88+8.01x+20.01 x;

ifxy;=Yandx,=F y=5.68+4.02x +10.02 x; (5.14)
ifx1=N y=4.58+8.11xg
The 2nd planning factor is

ifx;=Yandx,=T y=1025+1592x +40.03 x;

ifx;=Yandx,=F y=13.02+ 7.93x +19.96 x; (5.15)
ifx;=N y=10.13 +15.98 x5
The 3rd planning factor is
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fxy=Yandx,=T y= 798+59 x5 + 4.02x;
ifxy=Yandx,=F y=11.96+9.96 x5 +10.02 x; (5.16)

ifx;=N y= 6.63+5.01 x5

The planning factors and base quantities of subdata sets are
The st subdataset: The 1st planning factor; Base quantity = 1.00
The 2nd subdata set: The 2nd planning factor, Base quantity = 1.00

The 3rd subdata set: The 3rd planning factor, Base quantity = 1.00

For the subdata sets 1 and 2, the coefficients in the equations of the region < x; = N > do not

satisfy Eq. (3.8) when ConstTOL is 0.10. Thus the equations in the region are not proportional.
Consequently, they can not be described by the same planning factor. That is why they have their
own planning factors. But when ConstTOL is 0.15, the results of planning factors and base

quantities are different. They are

There are two planning factors :

The 1st planning factor is

ifx;=Yandx,=T y=>5.02+8.01 x5+ 20.08 x;

ifx;=Yandx=F  y=6.11+4.00 x + 10.03 x; (5.17)
ifx =N y=4.84 +8.07 x5
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The 2nd planning factor is

ifxi;=Yand x,=T y= 798 +5.94 x¢ +4.02 x7
ifxy=Yandx,=F y= 11.96+9.96 x5 + 10.02 x5 (5.18)

ifx;=N y= 6.63+5.01x3

The planning factors and base quantities of subdata sets are
The 1st subdata set : The 1st planning factor; Base quantity = 1.00
The 2nd subdata set: The 1st planning factor, Base quantity = 1.99

The 3rd subdata set: The 2nd planning factor, Base quantity = 1.00

It shows that the threshold ConstTOL is critical in the comparison of the regularities in two
subdata sets. The larger the threshold ConstTOL, the greater the possibility that the two subdata
sets can described by the same planning factor by introduction of their own base quantities.

Therefore, it is not a surprise that the same data set can generate different results.

5.2. Performance on Real Data Sets: Planning Factors P0016, P0018, and P0020

- The purpose of building the system PFactor is to update the predictive models of planning
factors and base quantities used by KDOT. The system has to run on real data sets. From the
discussion in Section 5.1, it is known that the system works well for artificial data sets. In this
section, we discuss the performance of PFactor on real data sets.

There are 65 planning factors and they are updated one-by-one. Therefore there are 65 files,
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each of which is used to update one planning factor. Each file contains the data records related with
the same current planning factor. The records of Functional Units that may come from different
Activities of different templates may be collected in the same data file as long as their durations are
predicted by the same current planning factor. The data are drawn from both managemeﬁt systems
CPMS and RMS.

A file is used as input for the system PFactor to update the corrésponding planning factor.
As discussed in Chapter 2, the learning starts at the level of Functional Units, theréfore the subsets
should be divided by each particular Functional Unit, that is to say, each Functional Unit should
have an M-model tree to describe the regularity between the Functional Unit duration and the
at;ributes. However, there may not be enough data for a particular Functional Unit. For instance, in
data file "cprms16.txt" (used in updating planning factor P0016), the Functional Unit CONRD has
only 7 examples, and the Functional Unit ENVIR has only 4 examples. Instead of giving up, the
learning on real data sets étarts based on the assumption that Functional Units originally described
by the same planning factor and the same base quantity behave the same. This assumption means
that the subdata sets should be grouped by the current base quantity of Functional Units rather than
by each Functional Unit.

Here, we discuss the performance of PFactor when it runs on data file “cprms16.txt” to
modify the planning factor PO016. The choice of the planning factor to test the system PFactor is
random. The data file "cprms16.txt" includes 189 examples from the management system CPMS
and 127 examples from the management system RMS. When the data set is generated from the
master project data base, domain engineers exclude the attributes irrelevant to duration using the
domain knowledge. In this case, 9 independent attributes are left. Five of the attributes are used in

region descriptions and four of them are used in region equations:
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Description: <US_81>, <Lanes>, <Urban_ind> and <Util_reloc>

Equation : <Length>, <Bridges>, <Tracts>, <T racts_condem>, and <Tracts_reloc>

All description attributes are symbolic and all equation attributes are numeric. When the system
runs on the data set, all parameters and thresholds use their default values except Repeat = 30. The

updated planning factor generated from "cpfmsl6.txt" is
p.f.=7598 (standard deviation = 77.65) (5.19

The average of percentage deviation by the current planning factor and updated planning factor are
1.52 and 1.52 respectively. Therefore, there is no improvement given by the updated planning
factor. The standard deviation has the same unit as duration. Here, the duration had unit "day",
therefore the standard deviation has unit "day" too. In fact, the standard deviation (77.65) of the
regression equation in Eq. (5.19) is very large. It represents the extreme scatter of the data points as
shown in Fig. 5.3.

The generated planning factor is not satisfactory. The system PFactor runs on the data file
"cpms16.txt", which excludes the data from the management system RMS. The updated planning

factor generated from "cpms16.txt" is

if <US81_ind>=E and <Util_relo¢>=N, p.f. = 88.25
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if <US81_ind>=E and <Util_reloc>=Y, p.f. =50.23 + 2.01*<Tract> (5.20)

if <US81_ind>=W, p.f=113.29

where the standard deviations of regions (<US81_ind>=E and <Util_reloc>=N), (<US81_ind>=E
and <Util_reloc>=Y), and (<US81_ind>=W) in Eq. (5.20) are 74.94, 54.10 and 115.39 respectively;
the average of percentage deviation by the current planning factor and updated planning factor are

1.12 and 0.96 respectively. The improvement rate is 14.29%.
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According to the average percentage deviations of the testing data, data file "cpms16.txt"
can generate an updated planning factor which predicts durations on testing data better than the

current planning factor based on the current data quality. The current data quality requires that

users be careful when using the updated planning factor for the following reasons.

e First, we look at the percentage deviation given by both current and updated planning
factors. It shows that the percentage deviation by the updated planning factor improves by
14.29%. However, the percentage deviation by the updated planning factor itself is 96%,
quite high. The 14% improvement of percentage deviation of updated planning factor is
obtained comparing With the current planning factor.

e Second, we look at the standard deviation of regions in Eq. (5.20), which are 74.94, 54.10
and 115.39 respectively. ’The standard deviations in Eq. (5.20) are very large. The example
data and Eq. (5.20) are shown in Figs. (5.4) to (5.6). Using regression equations with such
high standard deviations rhust be done cautiously.

e Third, we notice that there are 4 description attributes but only 2 are used, even though the
standard deviations are high. “Here, we check the process of building the M-model tree
corresponding to region:equation pairs. The M-model tree built up by the system before

pruning is shown in Fig. 5.7.

78



(07'5) b3 J0 (N=<00[o1 [111> put F=<pui” | gS()>) uoiBas uy eyep ojdwexg ps By
fapout aAndIpaid pajepdn £q uongIp PaOIPI | ———mm

uonem(] jen)oy @

‘oN 9jdwexy
0ci 00} 08 09 ov 114 0
m m m . 0
- - = m s ® m mll .
U s | ' ; "
: ]
...... . - oa S S o \ o s -8 | o
. ! - m " m "
. ; Ll . " " . [ -
ey : " : — s
||||||||||||||||| [T S S IR T T P .,..:.<|‘||.-:..:y.:|...-.|nx.
) ' ‘ ' . ' ' . ' ] oot
Ll . " “ - . g
' [ ' [ ] ' ' [ a N
. ] ' ] ] [} 7
. L - " " m
i R REEE P w R T IR SRR EEE o s 0st 8
1 ] . ]
. ! ! ! " ! . S,
' : " \ ' S
i ' [ ' L ' ] N\
lllllllllllllll "l::xllllllx'lln.: - - - - - 4.“. - - = “ .....-,......||v..v“vl,.n.,||||||||l QON .
o i ' ' 1 ’
" " . n " .
-" ] [} ] "
. , 1 ¢ (]
- L] ] 1 1
llllllllllllll ”|1l|||||||||I|".l|||:l..|....|||-p‘|01..v::,||v-..“...:!|..-11..||||:"...||,.Ac5|u|||.. omN
1) t [} 1 ]
] 1) + t ]
" ' " " . "
\ " ' “ '
L i 1 -. I com

(N=<20p21 [1[)> pue g=<pui” |gS()>) uotdas uf



(©T'6) 'bil Jo (A=<00p217[1N> put g=<pus” g§()>) uoidas uy vjep sdwexy g By
sjapow aAno1paid pajepdn £q uoneInp pajoIpal e—

uopeInp jen)dy ¢

el
08 oL 09 05 or (11 0z ol 0
+ + + ¢ + 4 ¢ 0
[) ] ) 1 ] 1 ]
' ' ' t ' ' ] ¢
' ' " ' X ' X
: ! : m m, ! L8
............ mmm : mo" m * 09
: y " '
) ) ) [}
m m m
i 001 Wu
' 2.
X B S
n 5
05t &
X
002
- 052

(A=<00]a1 11> pue g=<pur” 1§SN>) uoidas uf



(0Z°) 'ba Jo (M=<pur” 185n>) voida w ejep u_._::im 9'¢c “d1yg
13pour aayipard pajepdn Aq uoneinp parIPalf e
uogjemp enjpy ¥

ON sjdwexy
14 ov g€

[~
[2e]
Vol
N
[
o~N
w0
-
=]
-—
0
o

i 1 '} L 4 | i i o
' ) ' ] ' ' ] '
veyy
v " v! “ !y " ' v
1 «4 " ' 44 ' ' A 2
.......... "yn';..'....ﬂ.-.:-1------|.--..-.....,.." R R — R R Yo 05
LYy v o : v oYy LV
“ “ | 'y ] t v ] i Y
' '
= - . oo “ < - - « ‘, i * . i " = = “ ‘ vvvvvvv m .......... m llllllllll OCP
v ] N [ ' ' ] ] +
] ) < t t ] L] 1] ] ‘
[ ' v ' ' ' ' ' '
..... vl ] e
[ ! ] 1 ' ] t —
Loy vo v " L " “ =
......... WIou‘-nt--”ﬁnuunu..-usm,-.,4..-....".-r;.....A.".-.,,x......."...-,nc......“.--,.,.--x“..-ul.--u, 002
t ¢ I ' ] ’
[e]
" ' ' “ ' ' | X B
v v ' ' ' | [ ' J
......... L e e Tt [P - LR R B R 06¢ m
' ' ) 1 v ' ' t Y]
' . ' ) i 1 ' ' ' -
“ v " " " " " u et
u--n---;,"., . ,“.-|--:|---"‘. - "‘ .. |.".. ...... " - ".. . “.‘.-...-.A 00¢
) ) I ' ' ' 1 '
| i ' ' ' ' ' '
v Y ' ' ' 1 [ ' [
1 ' ' 1 ' ' ' '
lllllllll _.«vn||......y...u-nn..nu-u_-v..:A..:,,.:...-\-.-l..s...l...|....|.'..v-nuu.._....x.z..:x...cn.xvnu.. cmﬂ
' ' ' ' ' ' ] '
] 1 1 ) ] t ] ¢
t [ [ ' 1 ] ] 4
] ] ) ) [ ) 1 1
.......... w----,x::-ﬂ-|--||--,ﬂ- h ,w- - ,-‘ﬁ- N -d,z-.;.--sJ-;‘;,... 0 Tttt 1014
' 1 ' ' ' ' ' 1
L] ) ] ) ) ] ] )
: : N X X i N X

- 0S¢y

(M=<pw"18S01>) uoidos uj



<US81_ind>
I W
<Util_reloc> p.f=113.29
\ - v Leaf 3
p-f.=82.25 p.f.=50.23+2.01*<Tract>
Leaf 1 Leaf 2 |

Fig. 5.7 M-model tree built for real data set.

The nodes become leaves not because the standard deviations are smaller than the threshold
7 but because no remaining description attributes can be used to split the data. For instance,
before the node becomes leaf 1, it has one equation attribute it inherited from its mother
node. The remaining description attributes are <Lane> and <Urban_ind>. Its minimum
number of examples is 6. If the attribute <LLane> is used, one of its branches contains only 3
examples. Therefore, it can not be used. If the attribute <Urban_ind> is used, one of its
branches contains only 4 examples. Therefore, it can not be used. The node stops growing
and becomes leaf 1. - The same situation happens at the other leaves. Lack of data prevents

all attributes from being used in building up the M-model tree.

Two other planning factors are selected to test the system: POO18 and P0020. The
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information on the examples is listed in Table 5.1.

Table 5.1 Information on the files.

Planning factor Examples Examples  Total No of base

from CPMS  from RMS examples quantities

P0O18 179 124 303 1

P0020 211 114 325 1

The tests on the sysfem show that using the data from both CPMS and RMS could not
obtain updated planning factors that give better prediction on durations. They also show that using

the data only from CPMS can obtain updated planning factor that gives better prediction on duration

~ based on the current data quality. But, the system generates updated planning factors with high

standard deviations because noise exists in the data sets as shown in Figs. (5.3) to (5.6). Therefore,
users must carefully consider the application of the updated planning factors using domain

knowledge.
5.3 Data quality issues

The quality of updated planning factors is determined by data quantity and data quality.
That is to say, on the one hand, high quality of updated planning factors requires large data sets for
learning; on the other hand, high quality of updated planning factors requires high quality of data

sets, which means the noise in data sets is low.
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The updated planning factors generated by the system PFactor from real data sets have very

large standard deviations although the updated planning factors give better predictions when

compared with the current planning factors. The percentage deviation of the updated planning

factors are still high. They indicate the quality of updated planning factors is not high. The

problems come from the following reasons:

1)

2)

3)

Although the master data base is large, examples are not enough for a particular Functional
Unit. This prevents some attributes from being used in building the M-model tree for

Functional Units. The test on data file "cpms16.txt" displays such a shortage of examples.

‘For instance, if an attribute indeed has significant influence on duration for a data set, a

shortage of examples does not allow the attribute to be used in building up the M-model
tree. The given information may not be fully exploited.
The way of drawing data from the master data base may bring noise into the data sets. The

"actual" duration is obtained from the data base by the following calculation
duration = end_date - start_date 5.21)

If a Functional Unit was suspended for some time, the calculation does not exclude the time
when no work was done on the Functional Unit. This results in the duratiﬁn of the
Functional Unit used to update the models being greater than the ACTUAL duration.

The duration’s unit may not be consistent. The more people working on a project, the
shorter the duration. Duration obtained from the calculation Eq. (5.2) does not indicate how

many people work on Functional Units of a project. When different numbers of people
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4)

work on a Functional Unit, the Functional Unit will have different durations based on the
method of drawing data Eq. (5.21). Inconsistent duration units certainly bring some noise to
data sets.

To overcome the shortage of examples for each Functional Units, it is assumed that
Functional Units originally described by the same planning factor and the same base
quantities behave the same. If the assumption is not appropriate, the assumption brings

noise into the data set.

To obtain high quality of updated planning factors, shortage of data and low quality of data

sets have to be overcome. At present, a large number of data could not be collected immediately

because of the long period of transportation projects. Improvement of data quality should be

focused at the current stage.

Noise of data sets, to a great extent, do not come from the outliers as discussed in statistics.

In fact, no outliers can be identified due to extreme scatter of the data sets as shown in Figs. (5.3) to

(5.6). Impraving data quality should be focused on those aspects discussed in the first part of this

section. The methods of reducing noise mainly include the following:

1)

2)

3)

Duration of Functional Units should be continuous and nonfragmented. If duration of
Functional Units includes time when no work is done, that part of time should be subtracted
from duration of the Functional Units. |

The units of Functional Units’ duration are kept consistent. Duration unit should use
"days/person” instead of "days".

A third issue, raised in Section 2.4 is the use of estimated durations in place of actual
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durations in CPMS examples. This approach should be reevaluated and the possibility of

extracting true actual durations from cost center feedback CCFB data should be explored.
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Chapter 6

Conclusions

. Combining machine leaming techniques and regression analysis has a very promising

application in engineering problerhs. Complicated engineering problems can be solved by

means of machine learning.

. PFactor is a knowledge based machine learning system. It can induce nonhomogeneous

mathematical functions between a targeted variable/attribute and many other variables/attributes
from data sets, whose variables/attributes are of mixed types (symbolic and numeric) and
significant variables/attributes are unknown before data analysis. It can update the predictive

models of planning factors and base quantities used in KDOT project management system.

. The performance of system PFactor is very good on artificial data sets including a degree of

noise. Experiments show that increasing the number of examples can compensate for the noise

existing in data sets.

. The performance of system PFactor is not very good on actual KDOT provided data sets due to

extreme noisiness of these data sets and the small quantity of data examples. The low quality of
input data results in low quality of updated predictive models. To obtain a higher quality of

updated predictive models, collecting more data and improving data quality is required.
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5. To improve the quality of data sets, the data must be preprocessed and cleaned. On the one

hand, durations of Functional Units should be continuous and nonfragmented; on the other
hand, the units of duration should be consistent. In addition, actual durations are needed for

CPMS examples.
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Appendix A

Significant Attributes Used in Current Planning Factors

In general, a small numbers of significant attributes dominantly influence a Functional
Unit’s duration, are shown in the current planning factors using only a few attributes in determining
each factor. As known in Section 2.3, planning factors are expressed in region:equation pairs.
Attributes used in region descriptions and region equations are listed respectively in the following
table. In Table A.1, "S" indicates that attributes are symbolic and "N" indicates that attributes are

numeric. It is observed from Table A.1 that

1) Different planning factors have different significant attributes.

2) In all planning factors, attributes used in region equations are numeric. Except for
planning factors P0O016, POO18 and P0026, attributes used in region descriptions are
symbolic. When numeric attributes are used in region descﬁptions, they are discretized
and treated the same as symbolic attributes. For example, numeric attribute
<Bridge_width> is used in region descriptions of P0026. This results in <Bridge_width>

= (24'~30") and <Bridge_width> = (31'~56").
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3) In all planning factors except planning factors P0016, PO018 and P0020, attributes are
used either in region descriptions or region equations but attributes are not used both in
region descriptions and region equations. That is to say, the attributes are divided into
two groups, one group is used only in region descriptions and the attributes in this group
are called region description attributes. The other group of attributes is used only in
region equations and the attributes in this group are called equation attributes. In
planning faétors P0016, P0018 and P0020, the attribute <Tract> is used in region

descriptions and equations.

Table A.1 Significant attributes in current planning factors.

Planning Attributes in region description Attributes in numerical equations
factors Names Types Names Types
P0002 | <FHWA_improvement_type> S
P0003 || <Location_study> S
P0O004 <Tracts_relocated> N
P0005 <Tracts_relocated > N
P0006 <Tracts_condemned> N
P0O007 <Tracts_condemned> N
P0008 <Length> N
P0009 <Tracts> N
P0010 | <US81_ind> S <Length> N

<Bridges> N
P0011 | <Location_study> S <Length> N
<US81_ind> : S <Bridges> N
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P0012 | <US81_ind> S <Length> N
<Bridges> N
P0013 | <US81_ind> S
P0014 | <US81_ind> S <Bridge_replacement> N
<Length> N
P0015 <Bridges> N
P0016 | <Urban_ind> S <Tracts> N
<Tracts> N
P0017 || <Urban_ind> S <Tracts> N
P0018 | <Urban_ind> S <Tracts>
<Tracts> N
P0019 |} <Urban_ind> S <Tracts> N
P0020 | <Urban_ind> S <Tracts> N
P0021 I <Urban_ind> S <Tracts> N
P0022 | <Relocation> S <Tracts> N
P0023 | <US283_ind> S <Length> N
' <Crossing> S
P0024 | <Crossing> S
- P0025 <Length> N
<Bridges> N
P0026 | <Bridge_width> N <Bridge_length> N
<Metro> S
P0027 | <Borrow> S <Length> N
<US81_ind> S
P0028 <Length> N
<Distance> N
P0029 <Sign_footing> N
P0030 <Light_tower> N
P0031 <Utilities> N
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P0032 <Length> N
P0033 || <Design> S
P0034 | <Location_construct> S
<Design> S
P0035 | <Location_construct > S
<Design> S
P0036 | <Location_construct > S
<Design> S
P0037 |} <Urban_ind> S <Length> N
P0038 | <Urban_ind> S <Length>
P0039 | < Location_construct > S <Length>
<Urban_ind> S
P0040 | <Urban_ind> S <Length> N
<L ocation_construct > S
<Places> S
P0041 | <Urban_ind> S <Length> N
<Access_ind> S
P0042 | <Design> S <Bridges> N
P0043 | <Surface_material> S <Length> N
P0044 <Length> N
<Bridges> N
P0045 | <Surface_material> S <Length> N
<Bridges> N
P0046 | <Design> S
P0047 | <Design> S
"~ PO048 <Bridges> N
P0049 <Tracts>
P0050 | <Lane> S <Length> N
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P0051

<Construction_under_traffic>
<Urban_ind>

<Lanes>
<Surface_work_type>

<Length>
<Bridges>

P0052

<Construction_under_traffic>
<Urban_ind>

<Lanes>
<Surface_work_type>

<Length>
<Bridges>

P0053

<Design>
<Urban_ind>
<Lanes>

<Length>

P0054

<Design>

| <Urban_ind>

<L anes>

<Length>

P0055

<Design>
<Surface_work_type>
<Urban_ind>
<Lanes>

<Length>

P0056

<Design>
<Surface_work_type >
<Urban_ind>

<Lanes>

P0057

<Design>

<Bridges>

P0058

<Design>

<Bridges>

P0059

<Sign_project >
<Sign_truss>

P0060

<Sign_project >

P0061

<Sign_truss>

P0062

<Util_required>

P0063

<Urban_ind>
<Lanes>

N | L Y Lin | L Ll 1 v LBl v v Vv v ulun 1 Vi 12 1 L » v »

<Length>
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P0064 | <Urban_ind> S <Length> N
<Lanes> S

P0065 <Length> M

P0066 <Length> N
P0067 [ <Time> S
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Appendix B

File Description

This appendix gives file descriptions of source code of the system PFactor. The source
code file names (in bold), the number of lines of the files, and the simple descriptions of the files

are given, followed by the functions in that file with simple descriptions of the functions.

bforest.c 92 Build up forest consisting of M-model trees for subdata sets

BuildForest()  Build up M-model forest

bsfunc.c 120  Basic funcitons
readkey()  Get correct reading frém data file
getstr(ifp)  Get string from input file
FindChar(fc, ifp, n)  Find certain character.

1sChar(ifp, c) Confirm a reading from file is a char.
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btree.c 283  Building one M-model tree
BuildTree(Tree)  Build an M-model tree
NodeAttld(np)  Greedy search the attribute used in a node
UsedAtt(i,Node)  Check if an attribute is used in ancestor nodes
NodeSprout(Node,sp) ~ Sprout next generation of a node.

AddChild(np,Sibs)  Add a child node

errmeasure.c 107 Calculate error measure
CompErr(ofname)  Calculation of error by old and new pfactors.

CalcErr(np,Np,base,ofp)  Calculation of error in a node

estimate.c 57 Calculate error

Estimate(curTSet, Node, di,simp)  Calculate error

exfunc.c 99 Functions of handling example set
GroupEx(ExSet,i,UnigVal,sub)  Group tested example sets into subsets based

on the discrete values of the attribute

CountSetNo(ExSet)  Count the number of example sets

freefunc.c 215  Functions of freeing unnecessory memory
FreeSet (ExSet)  Free memory of example set

FreeRoot(Node)  Free memory of root node
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genfactor.c

groupdata.c

FreeNode(Node)  Free memory of non-leaf node
FreeSibs(Sibs)  Free memory of sibling nodes
FreeLayer(Layer)  Free memory of a layer
FreeRules(Rules)  Free memory of rules
FreeSubTree(np)  Free memory of subtree
FreeTree(Tree) | Free memory of a tree

FreeGFU(GrpFU)  Free memory of a group of trees

269  Generating planning factors

PFactors()’  Group similar trees and generate pfactors and base quantities

StructCmp(T1,T2)  Compare tree structures
idemp(npl,np2)  Check the numerical variables in eq
coefcmp(npl,np2) Compare proportionality of tree eqs
ConstRatio(T1,T2) Compare Ratio of tree similarities

GetPF(GFuncU)  Find planning factor

148  Group data set into subdata sets

GroupData()  Group data according to former base quantities
GroupExSet()  Group examples according to base quantities
GetSymAtt()  Finding out the description attributes

GetNumAtt()  Finding out the description attributes
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itree.c

listfiles.h

listhum.h

myutil.c

myutil.h

numfunc.c

67 Initialize a model tree

InitTree(Tree,Exm)  Initialize a model tree
178  List functions
25 List functions

106  Utility functions from "Numerical Recipes”

vector(nl,nh)  Allocate a float vector with subscript range v[nl..nh]
ivector(nl,nh)  Allocate an int vector with subscript range v[nl..nh
matrix(nrl,nrh,ncl,nch)  Allocate a float matrix with subscript range
free_vector(v,nl,nh) Allocate a float vector with subscript range v[nl..nh]
free_ivector(v,nl,nh)  Free an int vector allocated with ivector()

free_matrix(m,nrl,nrh,ncl,nch)  Free a float matrix allocated by matrix()
52 Type definition

415 Functions for regression analysis from "Numerical Recipes”
sort(n,ra)  Sort data in ascending order -
Regress(ExSet,NPT,aid,NPOL,a,chisq) = Regression Analysis
svdﬁt(ExSet,ajd,y,sig,ndata,a,ma,u,v,w,chisq,lyy,funcs) Singular value

decomposition fitting
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otfunc.c

pfactor.c

ptree.c

readfile.c

svdvar(v,ma,w,cvm) Singular value decomposition variance

fdata(ep,aid,p,ano)  Get data for calculating standard deviation
svﬁksb(u,w,v,m,n,b,x) <Numerical recipe in c> p64

svdcmp(a,m,n,w,v)  <Numerical recipe in ¢c> p67

pythag(a,b)  Compute (sq(a)+sq(b))*(1/2) without destructive underflow or

overflow

53 Functions to do basic checking
CoeSign(Rules)  Check the signs of coefficients

FindMaxPar(np)  Find Max parameter

98 Main program
main(Argc, Argv)  Main program

getopt(Argc, Argv, Str)  Get options

96 Prune a model tree

runeTree(Tree) Prune a model tree

PruneNode(Node) Prune a node
NodeORsﬁb(np,subErr) Compare node with its sub tree

AllLeaf(Node)  Check whether a node is of all leaf children

258  Read data from input data file
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res_lst.c

GetData(ifname) Get data

GetAttNo(ifp)  Get the number of columns in data file

GetAttInfo(ifp) ~ Get the information of all attributes, mainly including the first
three lines of data file.

GetExample(ifp)  Obtain all examples in data file.

PreCheck()  Check the format of data file

251  List intermediate results

Ist_units()  List examples

Ist_A(ap) List attribute information

Ist_E(ExSet) List examples in a node

Ist_row(ep) List one example

ShowUnique()  List discrete values of symbolic attributes
Ist_rules_bylayer(tp)  List rules by layer

PrintConds(np)  List region description

PrintEq(np)  List region equation

Ist_rules(Rules)  List rules by rule chain
Ist_ivector(n,Parld)  List numeric attributes in region description
Ist_node(tp,Node)  List information on a node
Ist_layer(tp,lp)  List information on a layef

Ist_pf()  List planning factors

Ist_bq()  List base quantities
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rules.c

simplify.c

types.h

Ist_sib(sib)  List sibling nodes

99 Find region:equation pairs
FindRuleChain(tp)  Find region:equation pairs
Chain(rp,np)  Find a chain region:equation pairs

Recover(Node)  Prepare data set for next partitioning

236  Simplify linear model
WiSimplify(Node)  Eliminate numeric attribute by weighted standard deviation
SdSimplify(Node)  Eliminate numeric attribute by standard deviation

NewParld(m,np)  Numeric attribute inherited by child nodes

167  Type definitions
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